##
Easiest/Laziest formula for Nth Fibonacci number *December 12, 2009*

*Posted by Ragesh G R in Physics and Maths, Uncategorized.*

trackback

trackback

There are many formulae for finding the Nth Fibonacci number, from recursive to non-recursive. Let me try to find the easiest laziest formula.

We know that most of the Fibonacci numbers ( from the 7th ) are in the Golden ratio. Let Golden Ratio (1.618…) be Phi.

Then F(n) = F(n-1)*Phi = F(n-2)*Phi^2 and so on.

So generally F(n) = F(n-x)*Phi^x

But we can’t write F(n) = F(1)*Phi^(n-1), because this will give you inaccurate results , because the 1st 7 numbers do not follow the Golden Ratio.

So the highest value x can take for a fairly accurate determination is n-7.

So our formula becomes F(n) = F(n-(n-7))*Ph^(n-7)

Therefore F(n) = F(7)*Phi^(n-7)

Fibonacci series goes as 1,1,2,3,5,8,13

So** F(n) = 13*Phi^(n-7).**

This will give a you a fairly accurate value for Nth Fibonacci.

You can get even lazier and say F(n) = 3*Phi^(n-4)

But this will magnify the error for 3 non compliant numbers and give you inaccurate resulsts, but if only it was accurate, this would be better from a laziness perspective if you are programming, because there are only 4 special cases. Of course we can argue that computation of Phi^(n-4) will take fractionally more time than computation of Phi^(n-7), but we can neglect that 🙂

Disclaimer : I am sure this already in some literature, but I got this idea when I was in the restoom (a link to my previous post LOL! ), so its mine , he he ! and I could not find similar text by “lazy” googling

Sema! It might already be in the literature! Who cares! The credit still completely goes to you! Now both in terms of space and time this is faster than the traditional recursive Fibonacci.Cool! Congrats on the discovery! Next time I have to use a fibonacci algorithm, I’ll use this!

heheh thanks! ya time wise and space wise pretty simple formulae but don’t blame me for any inaccuracies. :-p

hehe! Everything is about trial and error! We’ll see how accurate/inaccurate it is!

its pretty accurate hebhe

another paper from Einstein ..lol

hehe lol!

btw wonder where ppl use fibonacci in programming !!

except 2nd standard kids in West mambalam

lol! have nt u used? whats with 2nd std kids in west mambalam, fibonacci and golden do not surface till some 6th std

Find the best books for IIT JEE at 99grades – India’s leading online book-selling company. We have the largest collection of books with latest strategies and tips to prepare and crack the IIT JEE exam.

http://www.99grades.com/shop/BOOKS/competitive-exams/IIT,JEE,Medical%20Exams